pyspark.pandas.Series.idxmin#
- Series.idxmin(skipna=True)[source]#
Return the row label of the minimum value.
If multiple values equal the minimum, the first row label with that value is returned.
- Parameters
- skipnabool, default True
Exclude NA/null values. If the entire Series is NA, the result will be NA.
- Returns
- Index
Label of the minimum value.
- Raises
- ValueError
If the Series is empty.
See also
Series.idxmaxReturn index label of the first occurrence of maximum of values.
Notes
This method is the Series version of
ndarray.argmin. This method returns the label of the minimum, whilendarray.argminreturns the position. To get the position, useseries.values.argmin().Examples
>>> s = ps.Series(data=[1, None, 4, 0], ... index=['A', 'B', 'C', 'D']) >>> s A 1.0 B NaN C 4.0 D 0.0 dtype: float64
>>> s.idxmin() 'D'
If skipna is False and there is an NA value in the data, the function returns
nan.>>> s.idxmin(skipna=False) nan
In case of multi-index, you get a tuple:
>>> index = pd.MultiIndex.from_arrays([ ... ['a', 'a', 'b', 'b'], ['c', 'd', 'e', 'f']], names=('first', 'second')) >>> s = ps.Series(data=[1, None, 4, 0], index=index) >>> s first second a c 1.0 d NaN b e 4.0 f 0.0 dtype: float64
>>> s.idxmin() ('b', 'f')
If multiple values equal the minimum, the first row label with that value is returned.
>>> s = ps.Series([1, 100, 1, 100, 1, 100], index=[10, 3, 5, 2, 1, 8]) >>> s 10 1 3 100 5 1 2 100 1 1 8 100 dtype: int64
>>> s.idxmin() 10